Impact of L-carnitine and phosphatidylcholine containing products on the proatherogenic metabolite TMAO production and gut microbiome changes in patients with coronary artery disease

Abstract

The aim of the study was to assess the impact of L-carnitine and phosphatidylcholine containing products on the production of the proatherogenic metabolite TMAO and gut microbiome changes in patients with coronary artery disease (CAD).

Material and methods. The study consisted of 2 parts. In the first part, a comparison was made between the diet of patients with CAD (n=29) and healthy volunteers (n=30) over the age of 50 with respect to the frequency of intake of L-carnitine and phosphatidylcholine containing products. All participants underwent blood sampling and stool tests to assess the concentration of TMAO and the composition of fecal microflora. The second part of the study was dedicated to assessing the correlation between TMAO blood concentration in patients with CAD (n=89) and the frequency of intake of L-carnitine and phosphatidylcholine containing products.

Results and discussion. Patients with CAD comparing to healthy people among the predecessor products of TMAO consumed red meat, dairy products more often, eggs and fish less often. TMAO concentration in patients with CAD was higher than in healthy volunteers (1036.4±748.2 vs 376.5±147.9 ng/ml, p=0.0001). Analysis of fecal microflora in patients with CAD revealed an increase number of bacteria from Verrucomicrobiaceae family (p<0.05) and Enterobacteriaceae family (p<0.05), of the Escherichia/Shigella genera (p<0.05), there was a trend to increased number of Ruminococcus (р=0.065), Clostridium XlV (b) genera (р=0.10). Correlation between TMAO concentration and frequency of red meat, eggs, and dairy products consumption was estimated in patients with CAD (r>0.525, р<0.05).

Conclusion. Patients with CAD consume more precursors of TMAO, have higher blood TMAO concentrations compared to healthy volunteers. Fecal microflora of patients with CAD contains a greater number of gut bacteria related to trimethylamine producers compared to healthy volunteers. Reducing the number of L-carnitine and phosphatidylcholine containing products in the diet of patients with CAD may affect the decrease in the proatherogenic metabolite TMAO concentration.

Keywords:cardiovascular disease, diet, coronary artery disease, trimethylamine-N-oxide (TMAO), intestinal microbiome

For citation: Ivashkin V.T., Kashukh Ye.A. Impact of L-carnitine and phosphatidylcholine containing products on the proatherogenic metabolite TMAO production and gut microbiome changes in patients with coronary artery disease. Voprosy pitaniia [Problems of Nutrition]. 2019; 88 (4): 25-33. doi: 10.24411/0042-8833-2019-10038 (in Russian)

Cердечно-сосудистые заболевания (ССЗ) представляют большую проблему для современного здравоохранения ввиду их значительного вклада в структуру смертности [1]. Одним из наиболее распространенных ССЗ является ишемическая болезнь сердца (ИБС), в основе которой лежит атеросклеротическое поражение сосудов сердца. Совокупность процессов, способствующих дестабилизации атеросклеротической бляшки, приводит к развитию острого инфаркта миокарда.

Важным фактором риска развития заболеваний сердца и сосудов является нерациональное питание с преобладанием насыщенных жиров, сахара, мясных субпродуктов и соли [2]. Ввиду этого Всемирная организация здравоохранения (ВОЗ) и Американская ассоциация кардиологов рекомендуют увеличить в рационе количество овощей и фруктов, оливкового масла, бобовых, цельнозерновых и морепродуктов, снизить потребление красного мяса и переработанных мясных изделий, продуктов с высоким содержанием холестерина, сахара и соли [3].

В 2011 г был выделен новый потенциальный фактор сердечно-сосудистого риска - повышенный уровень триметиламин-N-оксида (ТМАО). Увеличение его уровня в крови было связано с неблагоприятными сердечно-сосудистыми событиями, т.е. с развитием инфаркта миокарда, острого нарушения мозгового кровообращения [4].

Согласно предложенной гипотезе, данное вещество способно ускорять процессы накопления липидов в макрофагах и пенистых клетках артерий, а также усиливать агрегацию тромбоцитов. ТМАО синтезируется в печени посредством окисления триметиламина (ТМА) с участием фермента флавинмонооксигеназы 3. Субстратами для формирования ТМА служат фосфатидил-холин и L-карнитин, поступающие в избытке при употреблении красного мяса, яиц, молочных продуктов, сыра, морепродуктов, бобовых [5, 6].

Указанные вещества преобразуются в ТМА под действием микрофлоры кишечника, преимущественно толстой кишки. Выделены как определенные ТМА-образующие бактерии (Enterobacteriaceae, Clostridia-ceae, Enterococcaceae, Streptococcaceae и др.), так и способность к передаче генов ферментов (ТМА-лиаз), участвующих в синтезе ТМА, среди некоторых бактерий, изначально не обладающих указанными свойствами [7].

Таким образом, возникло предположение о возможности предотвращения развития и прогрессирования ССЗ с помощью диеты. Изучение влияния тех или иных продуктов на формирование ТМАО до настоящего момента в основном проводилось на животных или здоровых добровольцах и дало противоречивые результаты.

Так, добавление в корм крыс фосфатидилхолина и L-карнитина наравне с жирной пищей приводило к повышению концентрации ТМАО [8]. Кормление мышей пищей, схожей по составу с западной диетой, содержащей большое количество жира, быстрых углеводов, красного мяса, также привело к увеличению уровня ТМАО [9]. Клинические исследования с участием вегетарианцев и людей, употребляющих пищу животного происхождения, продемонстрировали, что у последних концентрация ТМАО в крови значительно выше [10]. У пациентов с метаболическим синдромом в отсутствие ССЗ аналогичные результаты получены при повышенном содержании жирной пищи в диете [11]. S. Rohrmann и соавт. продемонстрировали, что среди здоровой популяции людей больше всего на повышение уровня ТМАО влияют молочные продукты, в то время как красное мясо, рыба и многие другие не повлияли существенно на концентрацию данного метаболита [12].

A. Malinowska и соавт. выявили у пожилых людей без указания на наличие ССЗ в анамнезе ассоциацию между потреблением яиц, мясных и молочных продуктов, крахмалсодержащей пищи, выпечки и возрастанием уровня ТМАО в крови [13].

Таким образом, до настоящего времени не получено однозначных данных о связи определенных продуктов с увеличением концентрации ТМАО в крови, не разработана диета с перспективой снижения уровня указанного метаболита

Цель данного исследования - оценить влияние потребления продуктов, содержащих L-карнитин и фосфатидилхолин, на продукцию проатерогенного метаболита ТМАО и изменения кишечного микробиома у пациентов с ИБС.

Материал и методы

Настоящее исследование выполнено на базе Клиники пропедевтики внутренних болезней, гастроэнтерологии и гепатологии им. В.Х. Василенко. Его участниками стали пациенты с ИБС, подтвержденной анамнестическими данными, результатами суточного мониторирования ЭКГ по Холтеру, коронароангиографии. Все пациенты получали антигипертензивные препараты, аспирин, статины, нитраты длительного действия.

Вторую группу в исследовании составили здоровые добровольцы старше 50 лет, у которых на момент обследования не было выявлено заболеваний со стороны сердечно-сосудистой системы, а также острых или обострения хронических заболеваний со стороны других органов и систем. Участники среди добровольцев были приглашены по результатам диспансеризации в ФГАОУ ВО "Первый Московский государственный медицинский университет" Минздрава России (Сеченовский университете), в Клинике пропедевтики внутренних болезней, гастроэнтерологии и гепатологии им. В.Х. Василенко их дополнительно обследовали для исключения ИБС.

После применения критериев включения и исключения в первый этап исследования были включены 29 пациентов с ИБС (14 мужчин и 15 женщин) и 30 здоровых добровольцев (16 мужчин и 14 женщин). Рандомизацию не проводили.

Исключению из исследования подлежали пациенты, получавшие за 1 мес до исследования антибиотики, пробиотики, с хроническими заболеваниями в стадии декомпенсации, онкологическими заболеваниями.

После подписания информированного согласия на участие в исследовании все участники заполняли анкету с указанием количества продуктов, содержащих фосфатидилхолин и L-карнитин, обычно потребляемых ими в неделю.

Определение концентрации триметиламин-N-оксида в крови

Накануне исследования участники исключали из диеты продукты с высоким содержанием фосфати-дилхолина и L-карнитина. Для стандартизации полученных результатов им выдавали 2 таблетки (800 мг) холина альфосцерата, которые необходимо было принять за 12 ч до забора крови. После приема холина следовал период голодания. После забора венозной крови выполняли центрифугирование образцов с последующим распределением аликвот сыворотки и замораживанием при температуре -80 °С до проведения анализа с использованием жидкостного тройного квадрупольного хромато-масс-спектрометра с электрораспылительной ионизацией LCMS-8050 (Shimadzu, Япония).

Анализ фекальной микрофлоры

Для анализа фекальной микрофлоры всем участникам выдали стерильные контейнеры и инструкцию по сбору образцов. Полученные образцы кала хранили в морозильной камере при температуре -80 °С. После разморозки образцов их подвергали гомогенизации, центрифугированию с последующим выделением ДНК для 16S-секвенирования, секвенирование проводили на приборе MiSeq (Illumina, США) в режиме парно-концевых прочтений, 2x150 нуклеотидов с использованием набора MiSeq Reagent Kit v2 (300 cycles). Тотальную ДНК выделяли с помощью реагентов MagNA Pure Compact Nucleic Acid Isolation Kit I (Roche, Швейцария). Для качественной и количественной оценки ДНК использовали NanoDrop 1000 (Thermo Fisher Scientific, США). Первый раунд амплификации вариабельных участков V3-V4 гена 16S рРНК выполняли с использованием прямого и обратного праймеров; программа амплификации (амплификатор Applied Biosystems 2720 Thermal Cycler, Thermo Fisher Scientific, США). Полученные продукты полимеразной цепной реакции (ПЦР) были очищены с использованием шариков Agencourt AMPure XP (Beckman Coulter, США). Второй раунд амплификации для двойного индексирования образцов выполняли с участием комбинации специфических праймеров и амплификатора Applied Biosystems 2720 Thermal Cycler (Thermo Fisher Scientific, США). Очистку ПЦР-продуктов проводили с помощью шариков Agencourt AMPure XP. Концентрацию полученных библиотек 16S определяли с помощью флуориметра Qubit® 2.0 (Invitrogen, США) и набора Quant-iT™ dsDNA High-Sensitivity Assay Kit. Подготовка 16S-метагеномных библиотек выполнена по протоколу 16S Metagenomic Sequencing Library Preparation (Illumina, США), рекомендованному Illumina для секвенатора MiSeq.

Для изучения таксономической структуры бактериального сообщества на уровне родов и семейств была выполнена прямая таксономическая аннотация полученных последовательностей ампликонов (Exact Sequence Variants). Ввиду того что прямые и обратные прочтения не перекрывались друг с другом (размер целевого ПЦР-ампликона, без адаптеров, варьировал в пределах 440-470 нуклеотидов), они были слиты в единый фрагмент с поли-N-трактом в середине и далее таксономически аннотированы при помощи классификатора RDP (Ribosomal Database Project) и базы данных RDP. Обработку данных проводили с помощью программной среды R, предназначенной для статистической обработки данных, c последующим графическим отображением результатов в виде диаграмм размаха (boxplot). Количественное содержание отдельных семейств или родов в исследованных образцах оценивали с использованием коэффициента Брея-Кертиса, позволяющего рассчитать содержание семейств и родов в исследованных образцах, уникальных и общих для 2 групп.

Статистический анализ

Анализ концентрации ТМАО и влияния диеты на уровень ТМАО выполнен с применением стандартных методов статистической обработки данных в программе IBM SPSS 22.0 (IBM, США). Для оценки межгрупповых различий использовали критерии Манна-Уитни и Фишера. Для анализа отличий в структуре фекальной микрофлоры, а именно состава микробиоты на уровне семейств и родов, применены критерий Вилкоксона, t-тест Стьюдента.

Результаты

Исследование было разделено на 2 части согласно его задачам. В первой части исследования сравнивали пищевые предпочтения пациентов с ИБС (n=29) и здоровых людей аналогичного возраста и пола (n=30).

Основные физические характеристики участников исследования указаны в табл. 1.

Оценка диеты и концентрации триметиламин-N-оксида у пациентов с ишемической болезнью сердца

У всех участников исследования оценивали рацион, в частности частоту потребления предшественников ТМАО. Анкета составлена с учетом приема продуктов, наиболее богатых фосфатидилхолином и L-карнитином, согласно полученным ранее данным в исследованиях [4]. Частоту потребления продуктов оценивали за недельный период, что было удобно для участников (табл. 2).

В результате отмечено более частое потребление красного мяса (говядина, свинина), молочных продуктов среди пациентов с ИБС, меньшее потребление рыбы, яиц. В отношении бобовых, брокколи и цветной капусты, а также морепродуктов частота приема была одинаково редкая (≤1 раза в неделю).

При сравнении концентрации ТМАО у пациентов с ИБС и здоровых людей обнаружено более чем 3-кратное повышение ее у лиц, страдающих ИБС. Так, концентрация ТМАО (M±σ) у пациентов с ИБС составила 1036,4±748,2 нг/мл, в то время как в группе здоровых участников - 376,5±147,9 нг/мл (р=0,0001)

Сравнение состава фекальной микрофлоры участников исследования

Состав фекальной микрофлоры изучали на уровне семейств и родов бактерий. Особое внимание уделяли обнаружению продуцирующей ТМА микрофлоры (семейства Enterobacteriaceae, Clostridiaceae, Peptococcaceae, Verrucomicrobiaceae, Enterococcaceae, Lachnospiraceae, Streptococcaceae и другие; роды Acinetobacter, Clostridium, Enterobacter, Escherichia, Proteus и др.).

Сравнение образцов кала пациентов с ИБС и здоровых участников позволило выявить у них увеличение как количества бактерий в материале, так и количественное преобладание микробов семейств Verrucomicrobiaceae (p<0,05) и Enterobacteriaceae (p<0,05), родов Escherichia/Shigella (р<0,05), тенденцию к увеличению количества бактерий Ruminococcus (р=0,065), Clostridium XlV (b) (р=0,10). Маркерные последовательности 16S во многом идентичны как для Escherichiaspp., так и для Shigella spp., поэтому данные приведены совместно (рис. 1, 2). Микрофлора, традиционно относящаяся к эубиотической, т.е. препятствующей колонизации условно-патогенными бактериями, представленная Lactobacillus spp. и Bifidobacterium spp., не продемонстрировала значимых изменений в составе (семейства Lactobacillaceae и Bifidobacteriaceae (р=0,18 и р=0,28 соответственно).

Таким образом, у пациентов с ИБС отмечено повышение концентрации ТМАО, увеличение количества триметиламин-продуцирующих бактерий в фекальной микрофлоре, что сопоставимо с увеличением количества продуктов - предшественников ТМАО в диете (красного мяса, молочных продуктов).

Оценка влияния диеты на концентрацию триметиламин-М-оксида

Задача второго этапа исследования - подтвердить взаимосвязь между частотой потребления продуктов, содержащих фосфатидилхолин и L-карнитин, и изменением концентрации ТМАО у пациентов с ИБС.

Для получения статистически значимых результатов количество участников с ИБС было увеличено до 89 человек, соответствующих критериям включения. Среди указанной когорты проведено анкетирование, результаты которого сопоставимы с полученными в первой части исследования данными. Также выполнен забор анализов крови на ТМАО.

Далее оценивали наличие корреляции между концентрацией ТМАО в сыворотке крови и частотой потребления того или иного продукта из указанных в анкете. Согласно полученным результатам, прием говядины, свинины, молока, сыра, яиц и бобовых ассоциирован с более высоким уровнем ТМАО (p<0,05), в то время как не получено достоверной ассоциации между повышением ТМАО и потреблением рыбы, цветной капусты и брокколи (табл. 3).

Таким образом, диета с высоким содержанием L-карнитина и фосфатидилхолина действительно вносит вклад в продукцию повышенного количества ТМАО у пациентов с ИБС.

Обсуждение

Большинство пациентов с ИБС, в отличие от здоровых добровольцев в предыдущих исследованиях, имеют опыт соблюдения диеты с ограничением прежде всего животных жиров и яиц. О необходимости диетических ограничений они, как правило, были проинформированы врачом при установлении диагноза.

Рекомендации ВОЗ, большинства национальных ассоциаций кардиологов сходятся во мнении, что изменения в питании в рамках вторичной профилактики ССЗ должны включать снижение потребления насыщенных жиров, соли, увеличения доли овощей и фруктов в диете [3].

С выделением ТМАО в качестве нового потенциального показателя сердечно-сосудистого риска оценивали влияние тех или иных продуктов на продукцию данного метаболита как в эксперименте на животных, так и в клинических исследованиях. Тем не менее до настоящего времени не изучали влияние диеты на концентрацию ТМАО и изменения микробиома при этом у людей с ИБС.

Данное исследование было направлено на оценку частоты потребления продуктов, которые служат субстратом для образования потенциально проатерогенного метаболита ТМАО у пациентов с ИБС. Согласно полученным данным, среди пациентов с ИБС ожидаемо отмечалось в среднем меньшее потребление яиц, тем не менее потребление красного мяса (говядина, свинина) среди данной группы было выше, чем среди участников, не страдающих ССЗ. Здоровые участники исследования чаще включали в рацион рыбу.

Включение в рацион бобовых, брокколи, цветной капусты и морепродуктов было редким во всех группах, вероятно, ввиду особенностей национального рациона и высокой стоимости некоторых указанных продуктов.

В исследовании важно было не только оценить рацион участников, но и продемонстрировать связь потребления определенных продуктов с увеличением концентрации ТМАО. Такая корреляция выявлена для красного мяса, яиц, молочных продуктов, что согласуется с полученными ранее данными в экспериментах, однако статистически не значима в отношении приема рыбы, несмотря на то что рыба - важный источник фосфатидилхолина [12]. Причины данного явления неясны и требуют дальнейшего изучения.

Продукция ТМАО осуществляется посредством участия кишечной микрофлоры, вследствие этого в исследовании сравнивали образцы фекальной микробиоты пациентов с ИБС и участников без ССЗ. Согласно результатам проведенного анализа, у пациентов с ИБС отмечено большее количество микроорганизмов семейств Verrucomicrobiaceae и Enterobacteriaceae, различия сохранялись на уровне родов. Указанные бактерии обнаруживаются и у здоровых людей, однако у пациентов, страдающих ССЗ, количество Enterobacteriaceae выше [14]. Данное семейство, факультативные анаэробы, включает множество патогенных и условнопатогенных микроорганизмов, таких как Enterobacter, Proteus, Shigella, Salmonella spp. В отношении семейства Verrucomicrobiaceae на сегодняшний день недостаточно данных, позволяющих оценить вклад в развитие патологии сердца и сосудов, а также в продукцию ТМА.

На уровне родов выявлено повышение количества бактерий Escherichia у пациентов с ИБС, представляющих собой совокупность как комменсалов, так и условно-патогенных и патогенных видов. В отношении метаболизма кишечной микробиоты важно отметить, что бактерии указанного рода могут служить субстратом для переноса ТМА-лиаз, т.е. своеобразным буфером для поддержания синтеза ТМАО в организме. Микроорганизмы родов Ruminococcus и Clostridium XIV (b), обнаружившие тенденцию к увеличению у пациентов с ИБС, играют важную роль в формировании местного иммунного ответа, продукции бутирата, однако, кроме того, участвуют в превращении холина в ТМА [15, 16].

Известно, что диета и состав кишечной микрофлоры тесно связаны, подвержены взаимным изменениям. Коррекция рациона питания способна повлиять на состав микробиома кишечника, при этом, согласно полученным ранее данным, в достаточно короткие сроки [17].

Среди изученных ранее в исследованиях терапевтических стратегий по снижению концентрации ТМАО в крови с целью потенциального снижения сердечно-сосудистого риска предложены антибиотики, пробиотики, эналаприл и некоторые другие [18]. Тем не менее ни один из методов не продемонстрировал убедительной эффективности.

Таким образом, диета с ограничением продуктов, содержащих L-карнитин и фосфатидилхолин, таких как красное мясо (свинина, говядина), яйца, молочные продукты, включая сыр, в отсутствие других эффективных мер по снижению концентрации ТМАО может быть одной из мер вторичной профилактики сердечно-сосудистого риска у пациентов с ИБС.

Настоящее исследование является пилотным и имеет некоторые ограничения. 16S-секвенирование не позволяет адекватно раскрыть потенциал продукции ТМА бактериями, а также разделить вклад пристеночной и просветной микрофлоры того или иного отдела кишечника в фекальных образцах. Низкая статистическая достоверность данных в отношении микробного состава на небольшом количестве образцов определила ограничение анализа такими таксономическими единицами, как семейство и род.

Ввиду того что L-карнитин и фосфатидилхолин служат важными источниками для многих метаболических процессов в организме, полностью исключать их нежелательно. Необходимы дальнейшие исследования с оценкой оптимального количества указанных нутриентов в рационе, с учетом в том числе микробного состава кишечника и его потенциальной коррекции.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Литература

1. World Health Organization. Global status report on noncommunicable diseases. 2014. 9-23.

2. Yu E., Malik V.S., Hu F.B. Cardiovascular Disease Prevention by Diet Modification: JACC Health Promotion Series // J. Am. Coll. Cardiol. 2018. Vol. 72, N 8. P. 914-926. doi: 10.1016/ j.jacc.2018.02.085

3. Bowen K.J., Sullivan V.K., Kris-Etherton P.M., Petersen K.S. Nutrition and cardiovascular disease - an update // Curr. Athero-scler. Rep. 2018. Vol. 20, N 2. P. 8. doi: 10.1007/s11883-018-0704-3

4. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease // Nature. 2011. Vol. 472. P. 57-63.

5. Кашух Е.А., Ивашкин В.Т. Влияние микробиома человека на состояние сердечно-сосудистой системы // Молекул. мед. 2017. Т. 15, № 4. С. 3-7.

6. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk // Cell. 2016. Vol. 165, N 1. P. 111-124. doi: 10.1016/j.cell.2016.02.011

7. Al-Obaide M.A.I., Singh R., Datta P., Rewers-Felkins K.A., Salguero M.V., Al-Obaidi I. et al. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with

T2DM and advanced CKD // J. Clin. Med. 2017. Vol. 6, N 9. pii: E86. doi: 10.3390/jcm6090086

8. Sun G., Yin Z., Liu N., Bian X., Yu R., Su X. et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity // Biochem. Biophys. Res. Com-mun. 2017. Vol. 493. P. 964-970. doi: 10.1016/j.bbrc.2017.09.108

9. Chen K., Zheng X., Feng M., Li D., Zhang H. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice // Front. Physiol. 2017. Vol. 8. P. 139. doi: 10.3389/fphys.2017.00139

10. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis // Nat. Med. 2013. Vol. 19. P. 576-585. doi: 10.1038/nm.3145

11. Boutagy N.E., Neilson A.P., Osterberg K.L., Smithson A.T., Englund T.R., Davy B.M. et al. Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet // Obesity. 2015. Vol. 23. P. 2357-2363. doi: 10.1002/oby.21212

12. Rohrmann S., Linseisen J., Allenspach M., von Eckardstein A., Muller D. Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population // J. Nutr. 2016. Vol. 146, N 2. P. 283-289. doi: 10.3945/jn.115.220103

13. Malinowska A.M., Szwengiel A., Chmurzynska A. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations // Int. J. Food Sci. Nutr. 2017. Vol. 68, N 4. P. 488-495. doi: 10.1080/09637486.2016.1256379

14. Jie Z., Xia H., Zhong S.L., Feng Q., Li S., Liang S. et al. The gut microbiome in atherosclerotic cardiovascular disease // Nat. Com-mun. 2017. Vol. 8, N 1. P. 845.

15. Rath S., Heidrich B., Pieper D.H., Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota // Microbiome. 2017. Vol. 5, N 1. P. 54. doi: 10.1186/s40168-017-0271-9

16. Ishii C., Nakanishi Y., Murakami S., Nozu R., Ueno M., Hioki K. et al. A metabologenomic approach reveals changes in the intestinal environment of mice fed on American diet // Int. J. Mol. Sci. 2018. Vol. 19, N 12. doi: 10.3390/ijms19124079

17. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E. et al. Diet rapidly and reproducibly alters the human gut microbiome // Nature. 2014. Vol. 505, N 7484. P. 559-563. doi: 10.1038/nature12820

18. Janeiro M.H., Ramirez M.J., Milagro F.I., Martinez J.A., Solas M. Implication of trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new therapeutic target // Nutrients. 2018. Vol. 10, N 10. pii: E1398. doi: 10.3390/nu10101398

References

1. World Health Organization. Global status report on noncommunicable diseases. 2014: 9-23.

2. Yu E., Malik V.S., Hu F.B. Cardiovascular Disease Prevention by Diet Modification: JACC Health Promotion Series. J Am Coll Cardiol. 2018; 72 (8): 914-26. doi: 10.1016/j.jacc.2018.02.085

3. Bowen K.J., Sullivan V.K., Kris-Etherton P.M., Petersen K.S. Nutrition and cardiovascular disease - an update. Curr Atheroscler Rep. 2018; 20 (2): 8. doi: 10.1007/s11883-018-0704-3

4. Wang Z., Klipfell E., Bennett B.J., Koeth R., Levison B.S. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011; 472: 57-63.

5. Kashukh Ye.A., Ivashkin V.T. Influence of human microbiome on the cardiovascular system. Molekulyarnaya Meditsina [Molecular Medicine]. 2017; 15 (4): 3-7. (in Russian)

6. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016; 165 (1): 111-24. doi: 10.1016/ j.cell.2016.02.011

7. Al-Obaide M.A.I., Singh R., Datta P., Rewers-Felkins K.A., Salguero M.V., Al-Obaidi I., et al. Gut microbiota-dependent trimethylamine-N-oxide and serum biomarkers in patients with T2DM and advanced CKD. J Clin Med. 2017; 6 (9). pii: E86. doi: 10.3390/jcm6090086

8. Sun G., Yin Z., Liu N., Bian X., Yu R., Su X., et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun. 2017; 493: 964-70. doi: 10.1016/j.bbrc.2017. 09.108

9. Chen K., Zheng X., Feng M., Li D., Zhang H. Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front Physiol. 2017; 8: 139. doi: 10.3389/fphys.2017.00139

10. Koeth R.A., Wang Z., Levison B.S., Buffa J.A., Org E., Sheehy B.T., et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013; 19: 576-85. doi: 10.1038/nm.3145

11. Boutagy N.E., Neilson A.P., Osterberg K.L., Smithson A.T., Englund T.R., Davy B.M., et al. Probiotic supplementation and tri-methylamine-N-oxide production following a high-fat diet. Obesity. 2015; 23: 2357-63. doi: 10.1002/oby.21212

12. Rohrmann S., Linseisen J., Allenspach M., von Eckardstein A., Muller D. Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population. J Nutr. 2016; 146 (2): 283-9. doi: 10.3945/jn.115.220103

13. Malinowska A.M., Szwengiel A., Chmurzynska A. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations. Int J Food Sci Nutr. 2017; 68 (4): 488-95. doi: 10.1080/09637486.2016.1256379

14. Jie Z., Xia H., Zhong S.L., Feng Q., Li S., Liang S., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Com-mun. 2017; 8 (1): 845.

15. Rath S., Heidrich B., Pieper D.H., Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017; 5 (1): 54. doi: 10.1186/s40168-017-0271-9

16. Ishii C., Nakanishi Y., Murakami S., Nozu R., Ueno M., Hioki K., et al. A metabologenomic approach reveals changes in the intestinal environment of mice fed on American diet. Int J Mol Sci. 2018; 19 (12). doi: 10.3390/jms19124079

17. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505 (7484): 559-63. doi: 10.1038/nature12820

18. Janeiro M.H., Ramirez M.J., Milagro F.I., Martinez J.A., Solas M. Implication of trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018; 10 (10). pii: E1398. doi: 10.3390/nu10101398