Orange juice nutritional profile

AbstractThe article continues a series of publications on juices nutrient profiles. Based on the literature data, scientific articles on the content of nutritive and biologically active substances in orange juice and the results of studies of various samples of orange juice of domestic industrial production conducted by the Russian Union of Juice Producers (RSPS), the article presents the nutrient profile of orange juice which contains more than 30 nutritive and biologically active substances. Potassium, copper, folate, vitamin C, as well as flavonoids (mostly hesperidin) are the most significant for industrial orange juice from the point of view of providing human body with micronutrients and minor biologically active substances. A glass of orange juice (200-250 ml) contains, on average, about 14% of the daily requirement in potassium, 7% - in copper, 25% - in folates and about 100% - in vitamin C. The content of flavonoids in a glass of orange juice is about 60% of daily recommended intake of these substances. Orange juices contain dietary fibers - both soluble (pectins) and insoluble. The total content of soluble and insoluble dietary fiber in a glass of orange juice with pulp on averages is 5% of the daily requirement in dietary fiber.

Keywords:orange juice, nutrientprofile, nutritive substances, micronutrients, biologically active substances

Voprosy pitaniia [Problems of Nutrition]. 2017; 86 (6): 103-113.

Соки содержат комплекс пищевых и биологически активных веществ, необходимых человеку, и поз­воляют частично восполнять существующий недостаток фруктов и овощей в питании населения России (сни­женное потребление на 30% по сравнению с рекомен­дуемым) [1, 2]. Современные технологии производства соков направлены на обеспечение соответствия при­родного состава фруктов и овощей и произведенных из них соков [3-6], т.е. сохранения в соках полезных свойств овощей и фруктов. При этом переработка фрук­тов в сок может способствовать лучшему сохранению пищевых веществ и фитонутриентов [7]. Так, биодоступ­ность отдельных биологически активных веществ, в частности каротиноидов -криптоксантина, лютеина, зеаксантина) и флавоноидов (флаванонов), из пасте­ризованного апельсинового сока выше, чем из свежих апельсинов [8, 9].

Фруктовые и овощные соки имеют сложный природ­ный состав и в большинстве случаев содержат более 500 различных веществ. В соках, как во фруктах и ово­щах, присутствуют углеводы, органические кислоты, аминокислоты, пептиды, минеральные соединения, ви­тамины, ароматические вещества, а также вторичные метаболиты растений, причем наиболее значимы из них полифенолы и каротиноиды. Информация о количест­венном содержании в соках макро- и микронутриентов, включая органические кислоты, минорные биологически активные соединения, содержится в справочниках хими­ческого состава пищевых продуктов, дополнительным источником информации о содержании отдельных ве­ществ являются публикации в научных журналах.

В настоящее время большую часть соков, потребляе­мых населением, составляют широко представленные в продаже соки промышленного производства. В связи с этим представляется важным проведение исследова­ний таких соков с целью уточнения и дополнения дан­ных, содержащихся в литературе.

Сок из определенного вида фруктов или овощей имеет свой уникальный набор пищевых и биологически активных веществ, что позволяет составить индивиду­альный нутриентный профиль сока. Статья продолжает публикацию нутриентных профилей соков [10].

Цель настоящей работы - установление нутриентного профиля апельсинового сока на основе анализа имею­щихся данных по содержанию в нем пищевых и биологи­чески активных веществ.

Материал и методы

Проанализирована информация из 11 справочников о содержании в апельсиновых соках пищевых и био­логически активных веществ [11-21], а также данных по содержанию витаминов В1, В2, В6, ниацина, фолатов и пантотеновой кислоты [22, 23] и витамина С в образ­цах апельсиновых соков (как промышленного произ­водства, так и свежеотжатых) [24-30]. Изучены данные по содержанию в апельсиновых соках калия, кальция, витамина В1, ниацина, β-каротина, витамина Е и фолатов [24-26], а также полифенольных соединений, в том числе гесперидина и нарирутина [24-28, 30-36].

Российским союзом производителей соков (РСПС) проведены исследования апельсиновых соков промыш­ленного производства в ФГБУН "ФИЦ питания и био­технологии" (Москва, Россия), Испытательном центре ФБУЗ "Федеральный центр гигиены и эпидемиологии" Роспотребнадзора (Москва, Россия), Испытательном центре ГЭАЦ "СОЭКС" (Москва, Россия) и лаборатории GfL (Берлин, Германия), а также в научно-исследова­тельских центрах и производственных лабораториях членов РСПС (АО "Мултон", ООО "Пепсико Холдингс", АО "Прогресс"). Определяемые пищевые и биологи­чески активные вещества и методы, использованные для исследований, приведены в табл. 1.

Результаты и обсуждение

Углеводы (моно- и дисахариды) Моно- и дисахариды в апельсиновом соке представ­лены глюкозой, фруктозой и сахарозой [11, 12, 14]. Данные по содержанию сахаров в апельсиновом соке, в том числе результаты исследований соков промыш­ленного производства, приведены в табл. 2.

Полученные в ходе исследований апельсиновых соков промышленного производства данные соответствуют информации, приведенной в справочниках. Суммар­ное содержание моно- и дисахаридов в апельсиновом соке промышленного производства составило 8,6-11,2 г в 100 мл. Соотношение фруктозы, глюкозы и сахарозы в соке зависит от сортовых особенностей апельсинов, из которых сок изготовлен. Для большинства соков это соотношение близко к 1:1:1,5.

Органические кислоты

Органические кислоты в апельсиновом соке представ­лены большей частью лимонной кислотой. L-яблочная кислота присутствует в апельсиновом соке в количест­вах, в несколько раз меньших, чем лимонная кислота [11, 12]. В еще меньших количествах в апельсиновых соках присутствуют D-изолимонная и аскорбиновая кислоты. Данные по содержанию лимонной и L-яблочной кислот в апельсиновом соке, в том числе промышлен­ного производства, приведены в табл. 3.

Данные исследований апельсиновых соков промышлен­ного производства соответствуют информации, приведен­ной в справочниках. Среднее содержание органических кислот в апельсиновом соке составляет 1,0 г/100 мл.

Пищевые волокна

Согласно данным литературы, содержание пек­тинов в апельсиновых соках лежит в интервале 0,057-0,12 г/100 мл для свежеотжатых соков и в интер­вале 0,028-0,083 г/100 мл для соков промышленного производства [12]. Соки, в которых присутствует мякоть, содержат как растворимые (пектины), так и нераствори­мые пищевые волокна (целлюлоза). Общее количество пищевых волокон в соках зависит от содержания в них мякоти. По данным различных источников, в среднем в апельсиновом соке содержание пищевых волокон лежит в интервале 0,1-0,45 г/100 мл [12, 14, 15, 19, 21], при этом во всех источниках отсутствует информация о количестве мякоти в соке.

Данные проведенных исследований (табл. 4) пока­зывают, что содержание пектинов в апельсиновом соке промышленного производства лежит в интервале 0,03-0,31 г/100 мл, а суммарное содержание пищевых волокон (сумма пектинов и представленных в соках в основном целлюлозой нерастворимых сухих веществ) составляет 0,49-0,82 г/100 мл.

Калий

Соки могут внести значительный вклад в рекомен­дуемое суточное потребление калия, являющегося ос­новным катионом внутриклеточной жидкости. Согласно данным литературы, содержание калия в апельсиновом соке варьирует в пределах 100-250 мг/100 мл [11-15, 17-21, 26]. Исследования (табл. 5) показывают, что в апельсиновом соке промышленного производства со­держание калия лежит в интервале 140-250 мг/100 мл, что соответствует данным литературы. Не выявлено значимых различий в содержании калия для соков пря­мого отжима и восстановленных соков.

Кальций

Согласно данным литературы, содержание кальция в апельсиновом соке лежит в интервале 1,37-25 мг/100 мл [11-15, 17-21, 26]. Исследования (табл. 6) показывают, что содержание кальция в апельсиновом соке промыш­ленного производства составляет 6,4-12,8 мг/100 мл, что соответствует данным литературы. Не выявлено значимых различий в содержании кальция для соков прямого отжима и восстановленных соков.

Магний

Согласно данным справочников, содержание магния в апельсиновом соке составляет 5-16 мг/100 мл [11-15, 17-21]. Данные исследований (табл. 7) показывают, что содержание магния в апельсиновом соке промышлен­ного производства колеблется в таком же диапазоне (6,6-14,7 мг/100 мл). Не выявлено значимых различий в содержании магния для соков прямого отжима и вос­становленных соков.

Фосфор

По данным справочников, содержание фос­фора в апельсиновом соке колеблется в диапазоне 10-22,7 мг/100 мл [11-15, 17-21]. Данные исследований (табл. 8) показывают, что содержание фосфора в апель­синовом соке промышленного производства лежит в интервале 11,3-17,3 мг/100 мл, что соответствует ин­формации, приведенной в справочниках. Не выявлено значимых различий в содержании фосфора для соков прямого отжима и восстановленных соков.

Железо

Согласно данным справочников, содержание железа в апельсиновом соке лежит в интервале 0,04-0,5 мг/ 100 мл [12-21]. Данные исследований (табл. 9) показы­вают, что содержание железа в апельсиновых соках промышленного производства соответствует справоч­ным данным, при этом полученные значения находятся ближе к нижней границе интервала.

Медь

Согласно данным справочников, содержание меди в апельсиновом соке лежит в интервале 0,01-0,1 мг/ 100 мл [12, 14, 15, 18, 19]. Данные исследований (см. табл. 9) показывают, что содержание меди в апельсиновых соках промышленного производства соответствует справочным данным, при этом полученные значения также находятся ближе к нижней границе интервала.

Марганец

По данным справочников, содержание марганца в апельсиновом соке лежит в интервале 0,01-0,1 мг/ 100 мл [12, 14, 15, 17-19]. Наиболее часто встречающе­еся среднее значение содержания марганца - около 0,02-0,03 мг/100 мл [12, 14, 15, 18]. Данные исследова­ний (см. табл. 9) апельсиновых соков промышленного производства также показывают значения на уровне 0,02-0,03 мг/100 мл.

Селен

Наблюдается большой разброс справочных дан­ных по содержанию селена в апельсиновом соке -от 0,000005 мг [15] до 0,006 мг [12] в 100 мл. Опреде­ление содержания селена в 2 образцах апельсинового сока промышленного производства показало, что оно находится ниже предела обнаружения использованного метода исследований (<0,0004 мг/100 мл), что подтверж­дает невысокое содержание селена в апельсиновых соках (не более 1,5% от суточной потребности в селене в порции сока). В связи с изложенным данные не вклю­чены в нутриентный профиль.

Витамин С

Согласно данным литературы, содержание витамина С в апельсиновом соке лежит в интервале 0,5-71,1 мг/ 100 мл [11-21, 24-30]. При этом минимальные и макси­мальные значения, указанные в [15], не подтверждаются данными из других источников (табл. 10) и данными иссле­дований апельсиновых соков промышленного производс­тва (табл. 11). Несмотря на то что содержание витамина С может снижаться в ходе технологической обработки сока, в апельсиновых соках промышленного производства оно в среднем составляет 20-30 мг/100 мл.

Витамин В1 (тиамин) Согласно данным справочников, содержание ви­тамина В1 в апельсиновом соке лежит в интервале 0,018-0,33 мг/100 мл [12-15, 17-21], наиболее часто встречающиеся в литературе средние значения -около 0,04-0,08 мг/100 мл [12-15, 17, 19-23, 26], что со­ставляет около 10% от суточной потребности человека в витамине В1 в порции сока. Значение 0,33 мг/100 мл [18] не подтверждается данными из других источников. Исследование 3 образцов сока промышленного про­изводства показало, что содержание витамина В1 на­ходится ниже предела обнаружения использованного метода исследований (<0,1 мг/100 мл). Это свидетельс­твует о необходимости дополнительных исследований с применением более чувствительных методов.

Витамин В2 (рибофлавин) По данным литературы, содержание витамина В2 в апельсиновом соке лежит в интервале 0,006-0,045 мг/100 мл [12-15, 17-21], наиболее часто встречающиеся в литературе средние значения - около 0,02-0,03 мг/ 100 мл [13-15, 17-23]. Исследования показывают, что содержание витамина В2 в апельсиновом соке промыш­ленного производства (n=3) находится ниже предела обнаружения использованного метода исследований (<0,02 мг/100 мл), что указывает на содержание вита­мина В2 на уровне не более 3% от суточной потребности человека в витамине В2 в порции сока.

Витамин В6 (пиридоксин) Согласно данным справочников, содержание ви­тамина В6 в апельсиновом соке лежит в интервале 0,02-0,145 мг/100 мл [12, 14, 15, 17-21], наиболее часто встречающиеся средние значения - 0,03-0,1 мг/100 мл [14, 15, 17-21, 23], что составляет около 10% от суточной потребности человека в витамине В6 в порции сока. Ис­следования показывают, что содержание витамина В6 в апельсиновом соке промышленного производства (n=3) находится ниже предела обнаружения исполь­зованного метода исследований (<0,2 мг/100 мл), что требует дополнительных исследований с применением более чувствительных методов.

Фолаты

Согласно данным литературы, содержание фолатов в апельсиновом соке лежит в интервале 0,005-0,066 мг/ 100 мл [12, 14-21, 26], при этом максимальные значения 0,066 и 0,0599 мг/100 мл указаны для свежеотжатых соков [12, 15]. Данные исследований (табл. 12) показывают, что содержание фолатов в апельсиновом соке промышлен­ного производства лежит в интервале 0,007-0,027 мг/ 100 мл, что соответствует данным литературы. Не вы­явлено значимых различий в содержании фолатов для соков прямого отжима и восстановленных соков.

Пантотеновая кислота

Согласно данным литературы, содержание пантотеновой кислоты в апельсиновом соке лежит в интервале 0,13-0,24 мг/100 мл [12, 14, 15, 17-19, 23]. Исследова­ния апельсиновых соков промышленного производства не подтверждают эти данные. Пантотеновая кислота не обнаружена в 5 образцах соков в рамках предела обнаружения использованного метода исследований (<0,04 мг/100 мл), еще в 3 образцах ее содержание со­ставляет 0,04-0,06 мг/100 мл.

Биотин

Согласно данным справочников, содержание био­тина в апельсиновом соке лежит в интервале 0,0007­0,002 мг/100 мл [12, 17-19]. Исследования показывают, что содержание биотина в апельсиновом соке промыш­ленного производства (n=3) находится ниже предела обнаружения использованного метода исследований (<0,005 мг/100 мл).

β-Каротин (провитамин А) Согласно данным литературы, содержание β-каро-тина в апельсиновом соке лежит в интервале 0,001­0,0909 мг/100 мл [11-15, 18-20, 24]. Значение 0,228 мг/ 100 мл [17] не подтверждается данными из других ис­точников. Данные исследований (табл. 13) показывают, что содержание β-каротина в апельсиновом соке про­мышленного производства лежит в интервале 0,029­0,068 мг/100 мл, что в целом соответствует данным ли­тературы.

Витамин К

Данные по содержанию витамина К в апельсиновых соках немногочисленны. Среднее содержание вита­мина К находится в интервале 0-0,0001 мг/100 мл [14, 15, 17]. При этом в [12] для свежих апельсинов указан интервал содержания витамина К 0-0,005 мг/100 мл, в среднем 0,0038 мг/100 мл. Исследования показывают, что содержание витамина К как в апельсиновом соке промышленного производства (n=3), так и в свежих апельсинах (n=1) находится ниже предела обнаруже­ния использованного метода исследований (<0,002 мг/ 100 мл), что подтверждает незначительное содержа­ние витамина К в апельсиновых соках (не более 0,2% от суточной потребности в витамине К в порции сока). В связи с изложенным данные не включены в нутриентный профиль.

Флавоноиды

Флавоноиды в цитрусовых соках, в том числе апельси­новом, представлены преимущественно флаванонами и в меньшей степени флавонами и флавонолами.

Основным флаванонгликозидом в апельсиновом соке является гесперидин, содержание которого со­ставляет более 90% от суммы флаванонов. По дан­ным литературы, количество гесперидина в апель­синовых соках варьирует от 4,6 до 122,1 мг/100 мл [11, 24-28, 31-33, 35, 36]. По данным исследований (табл. 14), содержание гесперидина в апельсиновом соке промышленного производства лежит в интервале 14,8-116 мг/100 мл.

Кроме гесперидина в апельсиновых соках обнару­жены минорные флаванонгликозиды, такие как нарирутин, нарингин, дидимин (изосакуранетин-7-О-рутино-зид) и понцирин (изосакуранетин-7-О-неогесперидозид). По результатам исследований 52 образцов апельсиновых соков из разных стран [31] содержание нарирутина в об­разцах составило от 2,87 до 20,6 мг/100 мл. Исследование 51, 54 и 44 образцов апельсиновых соков, изготовленных, соответственно, из апельсинов 5, 7 и 11 различных сор­тов, показало присутствие в них нарирутина в количест­вах 3,69-8,51; 1,61-14,2 и 0,55-14,2 мг/100 мл [32, 33, 36]. Содержание нарингина, дидимина и понцирина в апель­синовых соках промышленного производства и прямого отжима составило соответственно 0,00-7,54; 0,80-3,53 и 0,49-1,59 мг/100 мл [36].

Флавоны в апельсиновых соках представлены флавоновыми С- и О-гликозидами и полиметоксифла-вонами. Основные флавоновые гликозиды - апигенин-6,8-ди-С-глюкозид, диосмин и диосметин-6,8-ди-С-глюкозид - присутствуют в апельсиновых соках в количествах 2,78-8,00; 0,79-7,20 и 0,25-0,45 мг/ 100 мл соответственно [36]. Среди полиметоксифлавонов в апельсиновых соках преобладают синенсетин и нобилетин (0,17-0,36 мл и 0,18-0,34 мг/100 мл соот­ветственно) [36].

Содержание флавоноидов в апельсиновых соках про­мышленного производства, как и других полифенольных соединений, требует дальнейшего изучения.

Нутриентный профиль апельсинового сока

Нутриентный профиль сока включает информацию о содержании в соке макро- и микронутриенов, органических кислот, минорных и биологически активных веществ. При определении значений, вносимых в нутриентный профиль, приоритетны данные исследований для соков промышленного производства, особенно для восстановленных соков как самой популярной катего­рии соков на российском рынке.

Нутриентный профиль апельсинового сока представ­лен в табл. 15 и 16 и примечаниях к ним. Информа­ция, представленная в нутриентном профиле, может использоваться при некоммерческих коммуникациях и не может использоваться в других целях, в том числе в целях маркировки продукции.

Заключение

На основании анализа данных по содержанию пище­вых и биологически активных веществ в апельсиновом соке, имеющихся в литературе, и данных исследований, проведенных РСПС и его членами, представлен нутриентный профиль апельсинового сока, в котором при­ведено содержание более 30 пищевых и биологически активных веществ.

Наиболее значимыми с точки зрения обеспечения человека микронутриентами и минорными биологи­чески активными веществами для апельсинового сока промышленного производства являются витамин С, фолаты, калий, медь, а также флавоноиды (большей частью гесперидин). В стакане апельсинового сока (200-250 мл) содержится в среднем около 100% от суточной потребности [38, 39] в витамине С, 25% -в фолатах, 14% - в калии и 7% - в меди. Содержание флавоноидов в стакане апельсинового сока составляет около половины от суточной потребности человека в этих микронутриентах (согласно [38]).

Суммарное содержание растворимых (пектины) и не­растворимых пищевых волокон в стакане апельси­нового сока с мякотью составляет в среднем 5% от суточной потребности человека в пищевых волокнах (согласно [38]).

Литература

1. Потребление основных продуктов питания (в расчете на члена домашнего хозяйства в год, кг) (по итогам Выборочного обсле­дования бюджетов домашних хозяйств). URL: http://www.gks.ru/free_doc/new_site/population/family/tab6-11.htm. (дата обра­щения: 20.09.2017)

2. Приказ МЗ РФ № 614 от 19.08.2016 "Об утверждении реко­мендаций по рациональным нормам потребления пищевых продуктов, отвечающих современным требованиям здорового питания".

3. Landon S. Fruit juice nutrition and health // Food Australia. 2007. Vol. 59. P. 533-538.

4. Nicklas T.A., O'Neil C., Fulgoni V. Replacing 100% fruit juice with whole fruit: results in a trade off of nutrients in the diets of children // Curr. Nutr. Food Sci. 2015. Vol. 11, N 4. P. 267-273.

5. Nicklas T.A., O'Neil C., Fulgoni V. Consumption of 100% fruit juice is associated with better nutrient intake and diet quality but not with weight status in children: NHANES 2007-2010 // Int. J. Child Health Nutr. 2015. Vol. 4. P. 112-121.

6. Nicklas T.A., O'Neil C.E., Kleinman R. Association between 100% juice consumption and nutrient intake and weight of children aged 2 to 11 years // Arch. Pediatr. Adolesc. Med. 2008. Vol. 162. P. 557-565.

7. Clemens R., Drewnowski A., Ferruzzi M., Toner C.D., Welland D. Squeezing fact from fiction about 100% fruit juice: workshop proceedings // Adv. Nutr. 2015. Vol. 6, N 6-2. P. 236s-241s.

8. Aschoff J.K., Rolke C.L., Breusing N., Bosy-Westphal A., Hogel J., Carle R. et al. Bioavailability of β-cryptoxanthin is greater from pasteurized orange juice than from fresh oranges - a randomized cross-over study // Mol. Nutr. Food Res. 2015. Vol. 59. P. 1896-­1904.

9. Aschoff J.K., Riedl K.M., Cooperstone J.L., Hogel J., Bosy-Westphal A., Schwartz S.J. et al. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice - a randomized cross-over study // Mol. Nutr. Food Res. 2016. Vol. 60. P. 2602-2610.

10. Иванова Н.Н., Хомич Л.М., Перова И.Б. Нутриентный профиль яблочного сока // Вопр. питания. 2017. Т. 86, № 4. С. 125-136.

11. Свод правил для оценки качества фруктовых и овощных соков Европейской ассоциации производителей фруктовых соков (Code of Practice for Evaluation of Fruit and Vegetables Juices. A.I.J.N.). URL: http://www.aijn.org/publications/code-of-practice/the-aijn-code-of-practice. (дата обращения: 20.09.2017)

12. Souci S.W., Fachmann W., Kraut H., revised by Kirchhoff E. Food composition and nutrition tables, based on the 7th edition. Stuttgart : Medpharm GmbH Scientific Publishers, 2008. P. 1198-1199.

13. Скурихин И.М., Тутельян В.А.Таблицы химического состава и калорийности российских продуктов питания:справочник. М. : ДеЛипринт, 2007.

14. USDA National Nutrient Database for Standard Reference, N 28 (США). URL: https://ndb.nal.usda.gov/ndb. (дата посещения: 20.09.2017)

15. Table Ciqual, Composition Nutritionnelle desalimentsde ANSES (Франция). URL: https://pro.anses.fr/TableCIQUAL/index.htm. (дата посещения: на 20.09.2017)

16. The Swedish Food Composition Database, Livsmedelsverket (Швеция). URL: https://www.livsmedelsverket.se/en/food-and-content/naringsamnen/livsmedelsdatabasen. (дата обращения: 20.09.2017)

17. Banca Dati di Composizionedegli Alimenti per Studi Epidemiologici in Italia (BDA) (Италия). URL: http://www.bda-ieo.it/test/SearchForName.aspx?Lan=Eng. (дата обращения: 20.09.2017)

18. UK database - McCance, Widdowson, Composition of Foods (Вели­кобритания). URL: https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid. (дата посещения: 20.09.2017)

19. Fodevare data, DTU Fodevare institutted (Дания). URL: http://www.food.dtu.dk/Fejl/Fejl.aspx?aspxerrorpath=/ (дата обращения: на 20.09.2017)

20. Tabela da Composicao dos Alimentos (TCA) (Португалия). URL: http://nutrimento.pt/noticias/nova-tabela-de-composicao-de-alimentos-ja-disponivel. (дата обращения: 20.09.2017)

21. Bedca; Base de Datos Espanola de Composicion de Alimentos (Испания). URL: http://www.sennutricion.org/es/2013/05/15/base-de-datos-espaola-de-composicin-de-alimentos-bedca. (дата обра­щения: 20.09.2017)

22. Asenjo C.F., De Hernandez E.R., Rodriguez L.D., De Andino M.G. Vitamins in canned Puerto Rican fruit juices and nectars // J. Agric. Univ. Puerto Rico. 1968. Vol. 52. P. 64-70.

23. Holland B., Unwin L.D., Buss D.H. Fruit and Nuts. 1st Suppl. to McCance and Widdowson's the Composition of Foods (5th ed). Cambridge : Royal Society of Chemistry, 1992.

24. Aschoff J.K., Kaufmann S., Kalkan O., Neidhart S., Carle R., Schweiggert R.M. In vitro bioaccessibility of carotenoids, flavonoids, and vitamin C from differently processed oranges and orange juices [Citrus sinensis (L.) Osbesk] // J. Agric. Food Chem. 2015. Vol. 63. P. 578-587.

25. Morand C., Dubray C., Milenkovic D., Lioger D., Martin J.F., Scalbert A. et al. Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers // Am. J. Clin. Nutr. 2011. Vol. 93. P. 73-80.

26. Kurowska E.M., Spence J.D., Jordan J., Wetmore S., Freeman D.J., Piche L.A. et al. HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia // Am. J. Clin. Nutr. 2000. Vol. 72, N 5. P. 1095-1100.

27. Stincoa C.M., Baronib M.V., Di Paola Naranjob R.D., Wunderlinb D.A., Herediaa F.J., Melendez-Martineza A.J. et al. Hydrophilic antioxidant compounds in orange juice from different fruit cultivars: composition and antioxidant activity evaluated by chemical and cellular based (Saccharomyces cerevisiae) assays // J. Food Compos. Anal. 2015. Vol. 37. P. 1-10.

28. Kelebek H., Selli S., Canbas A., Cabaroglu T. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan // Microchem. J. 2009. Vol. 91. P. 187-192.

29. Boonpangrak S., Lalitmanat S., Suwanwong Y., Prachayasittikul S., Prachayasittikul V. Analysis of ascorbic acid and isoascorbic acid in orange and guava fruit juices distributed in Thailand by LC-IT-MS/ MS // Food Anal. Methods. 2015. Vol. 9, N 6. P. 1616-1626.

30. Fallico B., Ballistrerib G., Arenaa E., Brighinaa S., Rapisardab P. Bioactive compounds in blood oranges (Citrus sinensis (L.) Osbeck): level and intake // Food Chem. 2017. Vol. 215. P. 67-75.

31. Bronner M. HPLC-Bestimmung von Flavonoiden zur Uberpfrufung der Authentizitat und zum Nachweis von Orangensaftverfalschunge n: Diss. Braunschweig, 1996.

32. Mouly P.P., Arzouyan C.R., Gaydou E.M., Estienne J.M. Differentiation of citrus juices by factorial discriminant analysis using liquid chromatography of flavonone glycosides // J. Agric. Food Chem. 1994. Vol. 42. P. 70-79.

33. Pupin A.M., Dennis M.J., Toledo M.C.F. Flavonone glycosides in Brazilian orange juice // Food Chem. 1998. Vol. 61. P. 275-280.

34. Cassidy A., Bertoia M., Chiuve S., Flint A., Forman J., Rimm E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men // Am. J. Clin. Nutr. 2016. Vol. 104. P. 587-594.

35. Rampersaud G.C., Valim M.F. 100% citrus juice: nutritional contribution, dietary benefits, and association with anthropometric measures // Crit. Rev. Food Sci. Nutr. 2017. Vol. 57, N 1. P. 129-140.

36. Gattuso G., Barreca D., Gargiulli C., Leuzzi U., Caristi C. Flavonoid com­position of citrus juices // Molecules. 2007. Vol. 12, N 8. P. 1641-1673.

37. Технический регламент Таможенного союза ТР ТС 023/2011 "Технический регламент на соковую продукцию из фруктов и овощей" (утвержден Решением Комиссии Таможенного союза от 9 декабря 2011 г. № 882).

38. Методические рекомендации Роспотребнадзора МР 2.3.1.2432­08 от 18.12.2008 г. "Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации".

39. Технический регламент Таможенного союза ТР ТС 022/2011 "Пищевая продукция в части ее маркировки" : утв. Решением Комиссии Таможенного союза от 9 декабря 2011 г. № 881.